EQUILIBRIUM OF A PARTICLE, THE FREE-BODY DIAGRAM \& COPLANAR FORCE SYSTEMS

Today's Objectives:

Students will be able to :
a) Draw a free body diagram (FBD), and,
b) Apply equations of equilibrium to solve a 2-D problem.

APPLICATIONS

For a spool of given weight, what are the forces in cables AB and AC ?

APPLICATIONS

(continued)

For a given cable strength, what is the maximum weight that can be lifted ?

APPLICATIONS

(continued)
For a given weight of the lights, what are the forces in the cables? What size of cable must you use ?

COPLANAR FORCE SYSTEMS

(Section 3.3)

This is an example of a 2-D or coplanar force system. If the whole assembly is in equilibrium, then particle A is also in equilibrium.

To determine the tensions in the cables for a given weight of the engine, we need to learn how to draw a free body diagram and apply equations of equilibrium.

THE WHAT, WHY AND HOW OF A FREE BODY DIAGRAM (FBD)

Free Body Diagrams are one of the most important things for you to know how to draw and use.

What ? - It is a drawing that shows all external forces acting on the particle.

Why ? - It helps you write the equations of equilibrium used to solve for the unknowns (usually forces or angles).

How?

1. Imagine the particle to be isolated or cut free from its surroundings.
2. Show all the forces that act on the particle. Active forces: They want to move the particle. Reactive forces: They tend to resist the motion.
3. Identify each force and show all known magnitudes and directions. Show all unknown magnitudes and / or directions as variables .

Note : Engine mass $=250 \mathrm{Kg}$

FBD at A

EQUATIONS OF 2-D EQUILIBRIUM

Since particle A is in equilibrium, the net force at A is zero.

$$
\begin{aligned}
& \text { So } \boldsymbol{F}_{A B}+\boldsymbol{F}_{A C}+\boldsymbol{F}_{A D}=0 \\
& \text { or } \sum \boldsymbol{F}=0
\end{aligned}
$$

In general, for a particle in equilibrium, $\Sigma \boldsymbol{F}=0$ or $\Sigma \mathrm{F}_{\mathrm{x}} \boldsymbol{i}+\Sigma \mathrm{F}_{\mathrm{y}} \boldsymbol{j}=0=0 \boldsymbol{i}+0 \boldsymbol{j} \quad$ (A vector equation)

Or, written in a scalar form,
$\Sigma \mathrm{F}_{\mathrm{x}}=0$ and $\Sigma \mathrm{F}_{\mathrm{y}}=0$
These are two scalar equations of equilibrium (EofE). They can be used to solve for up to two unknowns.

EXAMPLE

Note : Engine mass $=250 \mathrm{Kg}$

FBD at A

Write the scalar EofE:

$$
\begin{aligned}
& +\rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{T}_{\mathrm{B}} \cos 30^{\circ}-\mathrm{T}_{\mathrm{D}}=0 \\
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{T}_{\mathrm{B}} \sin 30^{\circ}-2.452 \mathrm{kN}=0
\end{aligned}
$$

Solving the second equation gives: $\mathrm{T}_{\mathrm{B}}=4.90 \mathrm{kN}$
From the first equation, we get: $\mathrm{T}_{\mathrm{D}}=4.25 \mathrm{kN}$

SPRINGS, CABLES, AND PULLEYS

Cable is in tension
Spring Force $=$ spring constant * deformation, or

$$
\mathrm{F}=\mathrm{k} * \mathrm{~S}
$$

With a
frictionless
pulley, $\mathrm{T}_{1}=\mathrm{T}_{2}$.

EXAMPLE

Given: Sack A weighs 20 lb . and geometry is as shown.

Find: Forces in the cables and weight of sack B.

Plan:

1. Draw a FBD for Point E.
2. Apply EofE at Point E to solve for the unknowns $\left(\mathrm{T}_{\mathrm{EG}} \& \mathrm{~T}_{\mathrm{EC}}\right)$.
3. Repeat this process at C .

EXAMPLE (continued)

A FBD at E should look like the one to the left. Note the assumed directions for the two cable tensions.

The scalar E-of-E are:

$$
\begin{aligned}
& +\rightarrow \quad \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{T}_{\mathrm{EG}} \sin 30^{\circ}-\mathrm{T}_{\mathrm{EC}} \cos 45^{\circ}=0 \\
& +\uparrow \quad \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{T}_{\mathrm{EG}} \cos 30^{\circ}-\mathrm{T}_{\mathrm{EC}} \sin 45^{\circ}-20 \mathrm{lbs}=0
\end{aligned}
$$

Solving these two simultaneous equations for the two unknowns yields:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{EC}} & =38.6 \mathrm{lb} \\
\mathrm{~T}_{\mathrm{EG}} & =54.6 \mathrm{lb}
\end{aligned}
$$

EXAMPLE (continued)

Now move on to ring C.
A FBD for C should look like the one to the left.

The scalar E-of-E are:
$+\rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=38.64 \cos 45^{\circ}-(4 / 5) \mathrm{T}_{\mathrm{CD}}=0$
$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=(3 / 5) \mathrm{T}_{\mathrm{CD}}+38.64 \sin 45^{\circ}-\mathrm{W}_{\mathrm{B}}=0$
Solving the first equation and then the second yields
$\mathrm{T}_{\mathrm{CD}}=34.2 \mathrm{lb} \quad$ and $\quad \mathrm{W}_{\mathrm{B}}=47.8 \mathrm{lb}$.

CONCEPT QUESTIONS

(A)

1000 lb
(B)

1000 lb
(C)

1) Assuming you know the geometry of the ropes, you cannot determine the forces in the cables in which system above?
2) Why?
A) The weight is too heavy.
B) The cables are too thin.
C) There are more unknowns than equations.
D) There are too few cables for a 1000 lb weight.

GROUP PROBLEM SOLVING

Given: The car is towed at constant speed by the 600 lb force and the angle θ is 25°.
Find: The forces in the ropes $A B$ and AC.

Plan:

1. Draw a FBD for point A .
2. Apply the E-of-E to solve for the forces in ropes $A B$ and $A C$.

GROUP PROBLEM SOLVING

Applying the scalar E-of-E at A, we get;
$+\rightarrow \sum \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{AC}} \cos 30^{\circ}-\mathrm{F}_{\mathrm{AB}} \cos 25^{\circ}=0$
$+\rightarrow \sum \mathrm{F}_{\mathrm{y}}=-\mathrm{F}_{\mathrm{AC}} \sin 30^{\circ}-\mathrm{F}_{\mathrm{AB}} \sin 25^{\circ}+600=0$
Solving the above equations, we get;
$\mathrm{F}_{\mathrm{AB}}=634 \mathrm{lb}$
$\mathrm{F}_{\mathrm{AC}}=664 \mathrm{lb}$

ATTENTION QUIZ

1. Select the correct FBD of particle A.

ATTENTION QUIZ

2. Using this FBD of Point C , the sum of forces in the x -direction $\left(\Sigma \mathrm{F}_{\mathrm{X}}\right)$ is \qquad .
Use a sign convention of $+\rightarrow$.
A) $\mathrm{F}_{2} \sin 50^{\circ}-20=0$
B) $\mathrm{F}_{2} \cos 50^{\circ}-20=0$

C) $\mathrm{F}_{2} \sin 50^{\circ}-\mathrm{F}_{1}=0$
D) $\mathrm{F}_{2} \cos 50^{\circ}+20=0$
