Gravity

- Objects with mass attract one another (Never repel!)
- Newton's Universal Law of Gravitation

$$
F=\frac{G M_{1} M_{2}}{R^{2}}
$$

- $G=6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

Gravity and Weight

$$
\begin{aligned}
& F=\frac{G M_{\text {Earth }} M_{\text {You }}}{R_{\text {Earth }}^{2}} \\
& F=g M_{\text {You }} \\
& g=\frac{G M_{\text {Earth }}^{2}}{R_{\text {Earth }}^{2}}
\end{aligned}
$$

Earth

- Not a perfect sphere
- Equator bulges
- How does this effect g?
- Earth spins
- How does this effect g?

Earth

- Density not uniform
- Local variations in density \& mass
- Local variations in g
- Geologists use this to find minerals etc.

Gravity is a Long Range Force

- Common misconception that gravity ends once you get up into space (above the atmosphere). False.
- Earth (or Sun) will pull you to back.
- You fall with an acceleration same as $\mathrm{F}_{\mathrm{g}} / m$
- You have no apparent weight; same as if you were falling in an elevator shaft.

