

(b)

The electric field diagram of a positive point charge

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Simulation

Charges do not block or screen one another $\vec{E}_{net} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3$

Capacitors can produce a uniform electric field

Uniform Fields

Force on a Charge in E Field

Which way is the force on the

- charge?
- E Remember, E
- runs from + to external charge
- $\vec{F} = q\vec{E}$ if q > 0, \vec{E} & \vec{F} are parallel if q < 0, \vec{E} & \vec{F} are antiparallel