

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

## Batteries



- Use chemical energy to maintain a charge separation
- Voltage or potential difference
- $V=E / q$, constant
- Unit is the Volt (V)


## Current



- Air is an insulator
- Connect a conductor from + to -, have a circuit
- Charge flows
- Chem E used up keeping charge separation
- Current I = q/t
- Unit is Amperes (A)



## Resistor



- Very thin conductor
- Restricts current flow
- Thinner means higher resistance
- Creates a traffic jam.
- Result is a charge separation or voltage $\mathrm{V}_{\mathrm{R}}$ across resistor in a circuit.


## Power

- Power, P = E / t (watts)
- Simple math trick

$$
P=E / q \times q / t=V I
$$

- Battery supplies power and drives current
- Resistor dissipates power as heat "Joule Heating"
- Energy is conserved
$\therefore P_{\text {in }}=P_{\text {out }}$

$$
\mathrm{V}_{\mathrm{B}} \mathrm{I}=\mathrm{V}_{\mathrm{R}} \mathrm{I} \rightarrow \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{R}}
$$

## Ohm's Law

- For conductors, define resistance

$$
R=\frac{V_{R}}{I} \quad \text { unit is } \Omega(\mathrm{Ohm})
$$

- For certain conductors (the type we make resistors out of), R is constant


## Battery-Resistor Circuit



## Simulation



Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

## Goal

- Analyze circuit with many resistors
- Find nodes/junction where three or more wires come together
- Identify branches, paths from one node to the next
- Identify common nodes - connected by a bare wire (no resistor)
- Use $P_{\text {in }}=P_{\text {out }}$
- Use $I_{\text {in }}=I_{\text {out }}$
- Use V = IR, Ohm's Law


Copyright © 2004 Pearson Education, Inc., pubusming as Addison Wesley

