

Ammeters & Voltmeters

A coil of wire in a magnetic field twists proportionally to the current.

(a)

Galvanometer. Problem – resistance R_c wrong size to use alone to measure I or V.

The Problem – Galvanometer not a good Ammeter

- We want to measure I for a circuit where either V or R is unknown.
- But if R_c is big compared to R, I is wrong

Ammeter

We construct an ammeter by connecting a small shunt resistor in parallel.

Shunt carries most of the current.

$$I_G R_c = (I - I_G) R_{shunt}$$

$$\frac{1}{R_A} = \frac{1}{R_c} + \frac{1}{R_{shunt}}$$

Ammeters must be connected inline (series) to get correct measurement.

R_A must be much smaller than R in branch for I to be correct.

Typically if, $R_A = R / 100$, I = 99% of I_{TRUE}

The Problem – Galvanometer not a good Voltmeter

 But if R_C is not big compared to R, V is wrong

Voltmeter

We construct a voltmeter by connecting a large multiplier resistor in series.

Need $R_M + R_c >> R$ by about 100 times

V= (
$$R_{multiplier} + R_c$$
) I_G

$$R_V = R_{multiplier} + R_c$$

Remember

- Ammeters have a small resistance, make sure R_A << R
- Connect in series
- Voltmeters have a large resistance, make sure R_V >> R
- Connect in parallel