

- Motion broken into
 - Motion of CM
 - Motion about CM

Three Problem Types

• Real Pulleys

• Rolling

• Onset of Rolling

1. Real Fixed Pulleys

- Fixed pulley, no *a*. Interested only in τ 's and α . TFBD only
- Friction btw string and pulley. Tension varies over pulley.
- Treat as two different T's
- String relates $\mathsf{a}_{\mathsf{block}}$ to α and R
- R is lever arm for T's (T \perp R always)

2. Rolling Without Slipping

Moving right & speeding up

Given μ_{s} and $\mu_{k}.$ Find a and $f_{s}.$

If F is too big , disk will slip. What is F_{slip} ?

- a and α dirns related
- a = Rα
- f_s , not f_k , not f_s^{max}
- Must find formula for f_s
- Dirⁿ of f_s must be consistent with Newton's Laws
- f_s and a must be expressed in terms of given quantities

Find consistent a & α

Add all forces but f_s

F, N, & W cannot produce a torque. Some "other" force must!

 $-Rf_{s} = -I\alpha$ $I = \frac{1}{2}MR^{2} \& \alpha = a/R \implies f_{s} = \frac{1}{2}Ma$ $F - f_{s} = Ma \& N - Mg = 0$ $F - \frac{1}{2}Ma = Ma \implies a = \frac{2F}{3}M$ $f_{s} = \frac{1}{2}Ma \implies f_{s} = \frac{F}{3}$

Will start to slip ...

- Note $f_s = F/3$ so $f_s \uparrow$ when $F \uparrow$
- But f_s cannot exceed f_s^{max}
- $f_s^{max} = \mu_s N = \mu_s Mg$
- So will slip when $f_s = f_s^{max}$ or
- $F/3 = \mu_s Mg$ or $F = 3\mu_s Mg$

3. Onset of Rolling

If you place a spinning wheel on a surface, it will slip (f_k acting to slow rotation) But f_{k} makes CM move. At some time t, $v_f = R\omega_f$. Object rolls without slipping.

Note a $\neq R\alpha$. Must find equation for a and equation for α . Then $v_0 + at = R(\omega_0 + \alpha t)$. NB scalar eqn.

$$f_{k} = Ma \quad \& \quad N - Mg = 0 \quad \& \quad f_{k} = \mu_{k}N$$

$$\Rightarrow \quad a = \mu_{k}g$$

$$Rf_{k} = I\alpha \quad \& \quad I = \frac{1}{2}MR^{2}$$

$$\Rightarrow \quad \alpha = 2f_{k}/MR \quad \Rightarrow \quad \alpha = 2\mu_{k}g/R$$

$$v_{0} + \mu gt = R(\omega_{0} - 2\mu_{k}gt/R) \quad \Rightarrow \quad t = R\omega_{0}/3\mu_{k}g$$