

Work with constant α , so ω -*t* graph is linear. Slope of ω -*t* graph is α .

$$y = b + mx \Longrightarrow \omega_f = \omega_i + \alpha t$$

$$\omega_{ave} = \frac{\omega_f + \omega_i}{2}$$

Vector Direction

Right hand

(a) Angular speed increasing

(b) Angular speed decreasing

- $\vec{\alpha} \uparrow \vec{\omega} \Leftrightarrow$ speeding up
- $\vec{\alpha} \uparrow \downarrow \vec{\omega} \Leftrightarrow$ slowing down

(a) Angular speed increasing

(b) Angular speed decreasing

- $\vec{\alpha} \uparrow \vec{\omega} \Leftrightarrow$ speeding up
- $\vec{\alpha} \uparrow \downarrow \vec{\omega} \Leftrightarrow$ slowing down

Tangential Variables

 $s = r\theta$

$$\frac{ds}{dt} = r\frac{d\theta}{dt} \implies v_{tan} = r\omega$$

$$\frac{dv_{tan}}{dt} = r\frac{d\omega}{dt} \implies a_{tan} = r\alpha$$

Belts

Motor

Geared Wheels

Small gear and big gear are touching and cannot slip.

Tangential displacement, velocity, & acceleration of gears must match.

Common Axles

Rolling

Linear velocity, v

If wheel does not slip, tangential displacement, velocity, & acceleration must match linear displacement, velocity, & acceleration.

Point of contact is at "rest"

