

Average Velocity $\quad \vec{\omega}_{\text {average }}=\frac{\Delta \vec{\theta}}{\Delta t}$

$$
\text { Velocity } \quad \vec{\omega}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{\theta}}{\Delta t}=\frac{d \vec{\theta}}{d t}
$$

Moving +

Work with constant α, so $\omega-t$ graph is linear. Slope of $\omega-t$ graph is α.

$$
y=b+m x \Rightarrow \omega_{f}=\omega_{i}+\alpha t
$$

$$
\omega_{\text {ave }}=\frac{\omega_{f}+\omega_{i}}{2}
$$

Vector Direction

Right hand

Right hand

(a) Angular speed increasing

(b) Angular speed
decreasing

$$
\begin{aligned}
& \vec{\alpha} \uparrow \uparrow \vec{\omega} \Leftrightarrow \text { speeding up } \\
& \vec{\alpha} \uparrow \downarrow \vec{\omega} \Leftrightarrow \text { slowing down }
\end{aligned}
$$

bээqะ ขธlugกA (d) япігбэソээb

bээqる ทธlugกA (m) впігбээтпі

$$
\begin{aligned}
& \vec{\alpha} \uparrow \uparrow \vec{\omega} \Leftrightarrow \text { speeding up } \\
& \vec{\alpha} \uparrow \downarrow \vec{\omega} \Leftrightarrow \text { slowing down }
\end{aligned}
$$

Tangential Variables

$$
\begin{gathered}
\frac{d s}{d t}=r \frac{d \theta}{d t} \Rightarrow v_{\tan }=r \omega \\
\frac{d v_{\tan }}{d t}=r \frac{d \omega}{d t} \Rightarrow a_{t a n}=r \alpha
\end{gathered}
$$

Belts

Geared Wheels

Small gear and big gear are touching and cannot slip.

Tangential displacement, velocity, \& acceleration of gears must match.

Common Axles

Small disk and motor are connected by an axle.

Rotational displacement, velocity, \& acceleration of disks and motor must match.

Rolling

If wheel does not slip, tangential displacement, velocity, \& acceleration must match linear displacement, velocity, \& acceleration.

(b)

Point of contact is at "rest"

 small gear make?
0.100 m diameter

