Uncertainty

- Measurement is a range not a single number
- Symbol

- $\mathrm{L}=\mathrm{L} \pm \Delta \mathrm{L}$, range is $\mathrm{L}-\Delta \mathrm{L}$ to $\mathrm{L}+\Delta \mathrm{L}$
(absolute uncertainty)
- Also write $L=L \pm \ell \%$, where $\ell \%=\Delta L / L \times 100 \%$ (relative or percent uncertainty)

Significant digits

- $\Delta \mathrm{L}$ given to 2 digits if leading non-zero digit is a 1 or 2 and only 1 digit otherwise
- e.g. $27.5967 \pm 0.0176 \Rightarrow 27.597 \pm 0.018$ (5 SF)
- e.g. $71.8523 \pm 0.4571 \Rightarrow 71.9 \pm 0.5$ (3SF)

Estimating Uncertainty

- Two pieces
- Instrument uncertainty - how well you can read the scale
- Technique uncertainty - how hard it is to do the measurement
- Different people can have different but equally valid estimates of uncertainty

Math Operations with Uncertainty

- Suppose you have $A=16.4 \pm 0.3$ and $B=25.1$ ± 0.2
- What is $\mathrm{C}=\mathrm{A}+\mathrm{B}$?
- Might guess $\Delta C=\Delta A+\Delta B$, so that $C=41.5 \pm$ 0.5 .
- This $\Delta \mathrm{C}$ is too big if the uncertainties are independent
- $\Delta \mathrm{C}=\sqrt{(\Delta \mathrm{A})^{2}+(\Delta \mathrm{B})^{2}}, \mathrm{C}=41.5 \pm 0.4$

Addition and Subtraction Rule

- For any addition or subtraction,
- e.g., if $F=A+B-C+D-E$,
- $\Delta \mathrm{F}=\sqrt{(\Delta \mathrm{A})^{2}+(\Delta \mathrm{B})^{2}+(\Delta \mathrm{C})^{2}+(\Delta \mathrm{D})^{2}+(\Delta \mathrm{E})^{2}}$,
- Always + !!!

Multiplication and Division Rule

- For any combination of \times and \div
- e.g., if $F=A B C / D E$,
- $\frac{\Delta \mathrm{F}}{\mathrm{F}}=\sqrt{\left(\frac{\Delta \mathrm{A}}{\mathrm{A}}\right)^{2}+\left(\frac{\Delta \mathrm{B}}{\mathrm{B}}\right)^{2}+\left(\frac{\Delta \mathrm{C}}{\mathrm{C}}\right)^{2}+\left(\frac{\Delta \mathrm{D}}{\mathrm{D}}\right)^{2}+\left(\frac{\Delta \mathrm{E}}{\mathrm{E}}\right)^{2}}$,
- Then find $\Delta \mathrm{F}=\mathrm{F} \times \frac{\Delta \mathrm{F}}{\mathrm{F}}$

Functions and Uncertainty

- Use a little calculus. Suppose $F=f(x)$ and $x=$ $A \pm \Delta A$

- $\mathrm{m}=\frac{\mathrm{F}(\mathrm{A}+\Delta \mathrm{A})-\mathrm{F}(\mathrm{A})}{(\mathrm{A}+\Delta \mathrm{A})-(\mathrm{A})}$
- $\Delta \mathrm{F}=\Delta \mathrm{A} \times \mathrm{m}$
- $\Delta \mathrm{F} \cong \Delta \mathrm{A} \times \mathrm{f}^{\prime}(\mathrm{A})$

We apply quadrature to ensure the result is positive.

$$
\Delta \mathrm{F} \cong \sqrt{\left(\Delta \mathrm{~A} \times \mathrm{f}^{\prime}(\mathrm{A})\right)^{2}} \cong\left|\Delta \mathrm{~A} \times \mathrm{f}^{\prime}(\mathrm{A})\right|
$$

Remember

- A is the measured value
- $\Delta \mathrm{A}$ is the uncertainty in the measurement
- $f(x)$ is the function
- $f^{\prime}(x)$ is the derivative of the function (use following table)
e.g. evaluate $F=\ln (3.51 \pm 0.17)$
$A=3.51, \Delta A=0.17, f(x)=\ln (x), f^{\prime}(x)=1 / x$
$\Delta F=\Delta A \times 1 / A=0.17 / 3.51=0.0484$
$\therefore \mathrm{F}=1.2556 \pm 0.0484=1.26+0.05$

Function	Derivative
Kx (K exact)	K
$\mathrm{x}^{2}(z$ exact $)$	$\frac{1}{\mathrm{x}}$
$\ln (x)$	$\mathrm{e}^{\mathrm{x}-1}$
e^{x}	$\cos (\mathrm{x})$
$\sin (x)$	$-\sin (x)$
$\cos (x)$	$\frac{1}{\cos ^{2}(x)}$
$\tan (x)$	$\frac{1}{1+x^{2}}$
$\arctan (x)$	

For trig functions, Δx must be given in radians

Combining Rules

- e.g. $F=A-B \ln (C)$
- Follow order of operations (functions, \times and \div, + and -)
- Use one rule at a time

Example: $\mathrm{F}=\mathrm{A}-\mathrm{B} \ln (\mathrm{C})$

- Let $X=\ln (C), \Delta X=\Delta C / C$
- Now have F = A - BX
- Let $Y=B X, \frac{\Delta Y}{Y}=\sqrt{\left(\frac{\Delta B}{B}\right)^{2}+\left(\frac{\Delta X}{X}\right)^{2}}$ or

$$
\Delta \mathrm{Y}=\mathrm{BX} \sqrt{\left(\frac{\Delta \mathrm{~B}}{\mathrm{~B}}\right)^{2}+\left(\frac{\Delta \mathrm{X}}{\mathrm{X}}\right)^{2}}
$$

- Now $F=A-Y$.
- $\Delta F=\sqrt{(\Delta \mathrm{A})^{2}+(\Delta \mathrm{Y})^{2}}$

