## Uncertainty

- Measurement is a range not a single number
- Symbol
- $L = L \pm \Delta L$ , range is  $L \Delta L$  to  $L + \Delta L$ (absolute uncertainty)
- Also write L = L  $\pm \ell$  %, where  $\ell$  % =  $\Delta$ L/L × 100% (relative or percent uncertainty)

# Significant digits

- ∆L given to 2 digits if leading non-zero digit is a 1 or 2 and only 1 digit otherwise
- e.g.  $27.5967 \pm 0.0176 \implies 27.597 \pm 0.018$  (5 SF)
- e.g.  $71.8523 \pm 0.4571 \Rightarrow 71.9 \pm 0.5$  (3 SF)

# **Estimating Uncertainty**

- Two pieces
- Instrument uncertainty how well you can read the scale
- Technique uncertainty how hard it is to do the measurement
- Different people can have different but equally valid estimates of uncertainty

# Math Operations with Uncertainty

- Suppose you have A = 16.4  $\pm$  0.3 and B = 25.1  $\pm$  0.2
- What is C = A + B?
- Might guess  $\Delta C = \Delta A + \Delta B$ , so that C = 41.5 ± 0.5.
- This ∆C is too big if the uncertainties are independent

• 
$$\Delta C = \sqrt{(\Delta A)^2 + (\Delta B)^2}$$
, C = 41.5 ± 0.4

## Addition and Subtraction Rule

• For any addition or subtraction,

• e.g., if F = A + B - C + D - E,

•  $\Delta F = \sqrt{(\Delta A)^2 + (\Delta B)^2 + (\Delta C)^2 + (\Delta D)^2 + (\Delta E)^2}$ ,

• Always + !!!

## **Multiplication and Division Rule**

- For any combination of  $\times$  and  $\div$
- e.g., if F = ABC / DE,

• 
$$\frac{\Delta F}{F} = \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta C}{C}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta E}{E}\right)^2},$$

• Then find 
$$\Delta F = F \times \frac{\Delta F}{F}$$

#### **Functions and Uncertainty**

• Use a little calculus. Suppose F = f(x) and x =  $A \pm \Delta A$ 





•  $\Delta F \cong \Delta A \times f'(A)$ 

We apply quadrature to ensure the result is positive.

$$\Delta F \cong \sqrt{(\Delta A \times f'(A))^2} \cong |\Delta A \times f'(A)|$$

Remember

- A is the measured value
- $\Delta A$  is the uncertainty in the measurement
- f(x) is the function
- f'(x) is the derivative of the function (use following table)

e.g. evaluate F =  $ln(3.51 \pm 0.17)$ 

A = 3.51,  $\Delta A$  = 0.17, f(x) = ln(x), f'(x) = 1/x

 $\Delta$ F =  $\Delta$  A  $\times$  1/A = 0.17 / 3.51 = 0.0484

 $\therefore$  F = 1.2556  $\pm$  0.0484 = 1.26 +0.05

| Function                 | Derivative            |
|--------------------------|-----------------------|
| Kx (K exact)             | К                     |
| x <sup>z</sup> (z exact) | ZX <sup>z-1</sup>     |
| ln(x)                    | $\frac{1}{x}$         |
| e <sup>x</sup>           | e <sup>x</sup>        |
| sin(x)                   | cos(x)                |
| cos(x)                   | -sin(x)               |
| tan(x)                   | $\frac{1}{\cos^2(x)}$ |
| arctan(x)                | $\frac{1}{1+x^2}$     |

#### For trig functions, $\Delta x$ must be given in radians

# **Combining Rules**

• e.g.  $F = A - B \ln(C)$ 

 Follow order of operations (functions, × and ÷, + and –)

• Use one rule at a time

#### Example: $F = A - B \ln(C)$

- Let X = In(C),  $\Delta X = \Delta C/C$
- Now have F = A BX

• Let Y = BX, 
$$\frac{\Delta Y}{Y} = \sqrt{\left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta X}{X}\right)^2}$$
 or

$$\Delta Y = BX \sqrt{\left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta X}{X}\right)^2}$$

• Now 
$$F = A - Y$$
.

• 
$$\Delta F = \sqrt{(\Delta A)^2 + (\Delta Y)^2}$$