Mathematics Problem of the Week (233)

This week's winner is: Gabriele Tregnago

Contact Lin Hammill (Surrey Fir 348) or Judy Bicep (Richmond,3335) for your prize or email MathProblem@kpu.ca.

Submitting correct solutions to problem 233 were:

Stephen Borgen

David Luna

Problem 233 solution:

Since the radius of the inner circle is 1 , the sides of the square are 2.
Let x, and s be as in the diagram. The triangle is equilateral so each of its angles is 60°.

Triangle ABC is similar to the 30-60-90 triangle on the right.

Thus $\frac{x}{2}=\frac{1}{\sqrt{3}} \Rightarrow x=\frac{2}{\sqrt{3}}$.
The side of the equilateral triangle is of length s and $s=2+2 x$, so $s=2+\frac{4}{\sqrt{3}}$.
Since the angles of the large triangle are 60°, angle DEF is 30° and so angle EDF is 60°.

Then, by similar triangles, $\frac{r}{s / 2}=\frac{2}{\sqrt{3}} \Rightarrow r=\frac{s}{\sqrt{3}}=\frac{2+\frac{4}{\sqrt{3}}}{\sqrt{3}}=\frac{2 \sqrt{3}+4}{3} \approx 2.488$.

