Mathematics Problem of the Week (245)

This week's winner is:
 Matthew Potma

Contact Lin Hammill (Surrey Fir 348) or Judy Bicep (Richmond,3335) for your prize or email MathProblem@kpu.ca.

Also submitting correct solutions to problem 245

were:

Robert Hill, Zephram Tripp, Suzanne Pearce and David Luna

Problem 245 solution:

Solution

Let the number of missing pages be n and the first missing page be $p+1$. Then pages $p+1$ to $p+n$ are missing. Then the sum of the digits from $p+1$ to $p+n$ is 2896 .
To sum these digits consider:

Notice that n must be even because there are two pages on each leaf of a book. Thus we have $n / 2$ pairs, each with sum $(p+1)+(p+n)$. Also note that he prime factorization of 2896 is $2896=2^{4} \cdot 181$. Hence:

$$
((p+1)+(p+n)) \frac{n}{2}=(2 p+n+1) \frac{n}{2}=2896=2^{4} \cdot 181 .
$$

Multiplying by $2: \quad(2 p+n+1) n=2^{5} \cdot 181$
Since n must be even and $2 p+n+1$ must be odd (since $2 p$ and n are even),

$$
n=2^{5}=32 \text { and } 2 p+n+1=181 \text { so that } p=74 .
$$

Thus 32 pages are missing and they are pages 75 to 106 .

