Mathematics Problem of the Week (248)

This week's winner is:

Brady Schmidt

Contact Lin Hammill (Surrey Fir 348) or Judy Bicep (Richmond,3335) for your prize or email MathProblem@kpu.ca.

Also submitting correct solutions to problem 248 were:
 Anthony Roberts, Matt Potma, David Luna, and Suzanne Pearce

Problem 248 solution:

Let R be the radius of the semicircles and r the radius of the circle.
$B C$ is the radius of a semicircle and so is of length R.
Then, since the circle and semicircles are tangent BD is a line segment with length $\mathrm{R}+\mathrm{r}$.
CE is the radius of the middle semicircle and so it is of length R. Since $D E$ is of length $r, C D$ is of length R-r.
Applying Pythagoras Theorem to triangle BCD we obtain:

$$
\begin{aligned}
R^{2}+(R-r)^{2} & =(R+r)^{2} \\
R^{2}+R^{2}-2 r R+r^{2} & =R^{2}+2 r R+r^{2} \\
R^{2} & =4 r R \\
R & =4 r
\end{aligned}
$$

Thus the ratio is $\frac{r}{R}=\frac{1}{4}$.

