Mathematics Problem of the Week (252)

This week's winner is:

Victor Blancard

Contact Lin Hammill (Surrey Fir 348) or Judy Bicep (Richmond, 3335) for your prize or email <u>MathProblem@kpu.ca</u>.

Also submitting a corrrect solution was Burhan Akram

Problem 252 solution:

 $x + \sqrt{y} = 1$ $\sqrt{x} + y = 1$ with $x \ge 0$, $y \ge 0$ since the solutions must be real.

By inspection it is easy to see that two solutions are (x,y) = (1,0) and (x,y) = (0,1). Solving each equation for $y (y = (1-x)^2, y = 1-\sqrt{x})$ and graphing confirms that there is a third solution.

0.5

Since $x + \sqrt{y} = 1$ and $\sqrt{x} + y = 1$, $x + \sqrt{y} = \sqrt{x} + y$. Clearly a possible solution to this is x = y. Thus:

 $x + \sqrt{x} = 1$ $x + \sqrt{x} - 1 = 0$ $(\sqrt{x})^2 + \sqrt{x} - 1 = 0$

Solving the quadratic yields $\sqrt{x} = \frac{-1 \pm \sqrt{5}}{2}$. Since $\sqrt{x} > 0$ by definition, we have

$$x = \left(\frac{-1+\sqrt{5}}{2}\right)^2 = \frac{3-\sqrt{5}}{2}.$$

Thus the third solution is $(x,y) = \left(\frac{3-\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right)$