Mathematics Problem of the Week (259)

This week's winner is:

Gurmehak Sandhu

Contact Lin Hammill (Surrey Fir 348) or Judy Bicep (Richmond,3335) for your prize or email MathProblem@kpu.ca.

Also submitting correct solutions to problem 259 were:
 Harpreet Kaur, Brady Schmidt, Pratham Barghouti, Tierney Wisniewski, and Suzanne Pearce

Problem 259 solution:

$4!=4 \cdot 3 \cdot 2 \cdot 1=24$
$5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$ has exactly one zero. The zero occurs because $5 \times 2=10$.
We get as many zeros at the end of $n!$ as there are factors of 10 . A factor of 10 occurs whenever there is a 5 multiplied by an even number. Thus to determine how many zeros at the end of n ! were need only count the number of 5 s (since there are lots of even numbers).

5 ! has one 5 . There is not another 5 until we reach 10 !
10 ! has two 5 s (5 and $10=2 \times 5$) and so ends in 2 zeros. There is not another 5 until we reach 15!
15 ! has three 5 s and so is the first to end in 3 zeros.
20 ! has four 5 s and so is the first to end in 4 zeros.
25 ! has six 5 s (because $25=5 \times 5$) and so ends in 6 zeros.
Thus 25 ! is the first to end in exactly 6 zeros.
In fact $25!=15511210043330985984000000$.
Using the same reasoning 100 ! ends in 24 zeros, one for each multiple of $5(5,10,15, \ldots 95,100)$ and an extra one for $25,50,75$ and 100 , each of which has a factor of 5^{2}.

In fact $100!=9332621544394415268169923885626670049071596826438162146859296389521$

