Kwantlen Polytechnic University

Mathematics Problem of the Week 9

The winner of problem 268 is: Catherine Chow

Contact Tariq Nuruddin at Surrey MAC or Judy Bicep (Richmond,3335) for your prize or email MathProblem@kpu.ca.

We will start with one starry fish and then we will multiply the final result by 5 .
Let S_{n} be the number of starry fish alive at the end of month n.
$\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{S}_{3}=1$ starry fish
$S_{3}=1$ as these starry fish cannot subdivide and produce new fish in the first three weeks of life.
$\mathrm{S}_{4}=1+2$ new starry fishes $=3$ starry fishes
$\mathrm{S}_{5}=(1+2$ new starry fishes $)+2$ starry fishes $=5$ starry fishes
$\mathrm{S}_{6}=(1+2$ new starry fishes $)+2$ starry fishes +2 starry fishes $=7$ starry fishes
$\mathrm{S}_{7}=(1+2$ new starry fishes $)+2$ starry fishes +2 starry fishes +2 starry fishes $=\underline{9 \text { starry fishes }}$
The arrows denote that the starry fishes born in week 4 have lived for three weeks at the end of week 7.
$\mathrm{S}_{8}=(1+2$ new starry fishes $)+2$ starry fishes +2 starry fishes +2 starry fishes +
$\underline{(2+2(2 \text { new starry fishes }))}=\underline{15 \text { starry fishes. }}$
The underlined bold faced calculation shows the number of starry fishes that were reproduced by the starry fishes which were born in week 4.

So our recursive formula becomes $S_{n}=S_{n-1}+2 S_{n-4}, n \geq 4$
where $\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{S}_{3}=1$
Continuing in this way we get $\mathrm{S}_{15}=329$ starry fishes
329 starry fishes times $5=1645$ starry fishes
Total number of starry fishes $=1645$.

