Kwantlen Polytechnic University

Mathematics Problem of the Week 11 There was no winner this week.

Contact Tariq Nuruddin at Surrey MAC or Judy Bicep (Richmond,3335) for your prize or email MathProblem@kpu.ca.

Partial Solution provided by James Guerry

Consider the sum of the first n terms of the sequence $120,125,130,135, \ldots$:

$$
\begin{gathered}
S_{n}=\frac{n}{2}(120+(115+5 n)) \\
S_{n}=\frac{5}{2} n^{2}+\frac{235}{2} n
\end{gathered}
$$

Consider the sum of the interior angles of a polygon with n sides:

$$
\begin{aligned}
& S_{n}=180(n-2) \\
& S_{n}=180 n-360
\end{aligned}
$$

Therefore:

$$
\begin{gathered}
\frac{5}{2} n^{2}+\frac{235}{2} n=180 n-360 \\
\frac{5}{2} n^{2}+\frac{235}{2} n-180 n+360=0 \\
\frac{5}{2} n^{2}-\frac{125}{2} n+\frac{720}{2}=0 \\
n^{2}-25 n+144=0 \\
(n-9)(n-16)=0 \\
n=9,16
\end{gathered}
$$

Therefore, the other polygon must be a 16 -gon with angles $120^{\circ}, 125^{\circ}, 130^{\circ}, \ldots, 195^{\circ}$.
However, one side will be a straight line due to a 180° angle. So the other polygon will be a 15 -gon or a pentadecagon.

