How Unit Vectors Change With Time

First note
$$\frac{d\hat{u}_t}{dt} = \frac{d\hat{u}_t}{d\theta} \frac{d\theta}{dt}$$
 using chain rule.

Next
$$\theta = \frac{s}{\rho}$$
, so $\frac{d\theta}{dt} = \frac{1}{\rho} \frac{ds}{dt} = \frac{v}{\rho}$

Need to determine $\frac{d\hat{u}_t}{d\theta}$

Consider how our unit vectors change as we move through some small angle $\Delta\theta$.

We will redraw unit vectors at common origin to examine $\Delta\theta$.

We have Isosceles Triangles since our unit vectors are all length 1.

$$2\beta + \Delta\theta = 180^{\circ}$$

$$\beta + \alpha = 90^{\circ}$$

$$\therefore \alpha = \frac{\Delta\theta}{2}$$

$$\overrightarrow{\Delta u_t} = \Delta u_t \left(-\hat{u}_t sin\left(\frac{\Delta\theta}{2}\right) + \hat{u}_n cos\left(\frac{\Delta\theta}{2}\right) \right)$$

$$\frac{\overrightarrow{\Delta u_t}}{\Delta\theta} = \frac{\Delta u_t}{\Delta\theta} \left(-\hat{u}_t sin\left(\frac{\Delta\theta}{2}\right) + \hat{u}_n cos\left(\frac{\Delta\theta}{2}\right) \right)$$

We have to find Δu_t to continue. Will break our Isosceles Triangle into two right triangles. We find

$$\sin\left(\frac{\Delta\theta}{2}\right) = \frac{\Delta ut}{2}$$

For small ϕ , $\sin \phi \cong \phi$ and $\cos \phi \cong 1$

So
$$\frac{\Delta\theta}{2} = \frac{\Delta ut}{2}$$
 or $\Delta\theta = \Delta ut$

Thus
$$\frac{\overrightarrow{\Delta u_t}}{\Delta \theta} = \frac{\Delta u_t}{\Delta \theta} \left(-\hat{u}_t sin\left(\frac{\Delta \theta}{2}\right) + \hat{u}_n cos\left(\frac{\Delta \theta}{2}\right) \right)$$
 becomes

$$\frac{\overrightarrow{\Delta u_t}}{\Delta \theta} = -\hat{u}_t \frac{\Delta \theta}{2} + \hat{u}_n$$

We take the limit as $\Delta\theta \to 0$, to get the derivative $\frac{\overline{du_t}}{d\theta} = \hat{u}_n$

And thus
$$\frac{d\hat{u}_t}{dt} = \frac{d\hat{u}_t}{d\theta} \frac{d\theta}{dt} = \hat{u}_n \frac{v}{\rho}$$

Using the same approach

$$\frac{d\hat{u}_n}{dt} = \frac{d\hat{u}_n}{d\theta} \frac{d\theta}{dt} = -\hat{u}_t \frac{v}{\rho}$$

