How Unit Vectors Change With Time

First note $\frac{d \widehat{u}_{t}}{d t}=\frac{d \widehat{u}_{t}}{d \theta} \frac{d \theta}{d t}$ using chain rule.
$\operatorname{Next} \theta=\frac{s}{\rho}$, so $\frac{d \theta}{d t}=\frac{1}{\rho} \frac{d s}{d t}=\frac{v}{\rho}$

Need to determine $\frac{d \widehat{u}_{t}}{d \theta}$

Consider how our unit vectors change as we move through some small angle $\Delta \theta$.

We will redraw unit vectors at common origin to examine $\Delta \theta$.

We have Isosceles Triangles since our unit vectors are all length 1 .

$$
\begin{gathered}
2 \beta+\Delta \theta=180^{\circ} \\
\beta+\alpha=90^{\circ} \\
\therefore \alpha=\frac{\Delta \theta}{2} \\
\overrightarrow{\Delta u_{t}}=\Delta u_{t}\left(-\hat{u}_{t} \sin \left(\frac{\Delta \theta}{2}\right)+\hat{u}_{n} \cos \left(\frac{\Delta \theta}{2}\right)\right) \\
\overrightarrow{\Delta u_{t}}=\frac{\Delta u_{t}}{\Delta \theta}\left(-\hat{u}_{t} \sin \left(\frac{\Delta \theta}{2}\right)+\hat{u}_{n} \cos \left(\frac{\Delta \theta}{2}\right)\right)
\end{gathered}
$$

We have to find Δu_{t} to continue. Will break our Isosceles Triangle into two right triangles. We find

$$
\sin \left(\frac{\Delta \theta}{2}\right)=\frac{\Delta u t}{2}
$$

For small $\varphi, \sin \varphi \cong \varphi$ and $\cos \varphi \cong 1$

So $\frac{\Delta \theta}{2}=\frac{\Delta u t}{2}$ or $\Delta \theta=\Delta u t$
Thus $\frac{\overrightarrow{\Delta u_{t}}}{\Delta \theta}=\frac{\Delta u_{t}}{\Delta \theta}\left(-\hat{u}_{t} \sin \left(\frac{\Delta \theta}{2}\right)+\hat{u}_{n} \cos \left(\frac{\Delta \theta}{2}\right)\right)$ becomes

$$
\frac{\overrightarrow{\Delta u_{t}}}{\Delta \theta}=-\hat{u}_{t} \frac{\Delta \theta}{2}+\hat{u}_{n}
$$

We take the limit as $\Delta \theta \rightarrow 0$, to get the derivative $\frac{\overrightarrow{d u_{t}}}{d \theta}=\hat{u}_{n}$
And thus $\frac{d \widehat{u}_{t}}{d t}=\frac{d \widehat{u}_{t}}{d \theta} \frac{d \theta}{d t}=\hat{u}_{n} \frac{v}{\rho}$

Using the same approach

$$
\frac{d \widehat{u}_{n}}{d t}=\frac{d \widehat{u}_{n}}{d \theta} \frac{d \theta}{d t}=-\widehat{u}_{t} \frac{v}{\rho}
$$

