Addition and Subtraction

- Using simple trig
- Usually avoided in other physics courses
- Good only for two 2D vectors and their resultant or for resolving a 2D vector into components.
- Slow and unwieldy for 3 or more 2D vectors.
- Very difficult with 3D vectors.

Basic Rules

SineLaw: $\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C}$
CosineLaw: $\quad C^{2}=A^{2}+B^{2}-2 A B \cos \gamma$

Find $\vec{C}=\vec{A}+\vec{B}$ and $\vec{D}=\vec{A}-\vec{B}$

$C=\sqrt{100^{2}+80^{2}-2(100)(80) \cos \left(110^{\circ}\right)}=147.89$
$\frac{\sin \beta}{80}=\frac{\sin \left(110^{\circ}\right)}{147.89} \quad \beta=\arcsin (0.5083)=30.55^{\circ}$
$\vec{C}=148$ at 70.6° to $-x$ axis

$D=\sqrt{100^{2}+80^{2}-2(100)(80) \cos \left(70^{\circ}\right)}=104.54$
$\frac{\sin \beta}{80}=\frac{\sin \left(70^{\circ}\right)}{104.54} \quad \beta=\arcsin (0.7191)=45.98^{\circ}$
$\vec{D}=105$ at 6.0° below $-x$ axis

