MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, \& PRINCIPLE OF MOMENTS

Today's Objectives :

Students will be able to:
a) understand and define moment, and,
b) determine moments of a force in 2-D and 3-D cases.

What is the net effect of the two forces on the wheel?

APPLICATIONS

(continued)

What is the effect of the 30 N force on the lug nut?

MOMENT OF A FORCE - SCALAR FORMULATION (Section 4.1)

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

MOMENT OF A FORCE - SCALAR FORMULATION

(continued)

In the 2-D case, the magnitude of the moment is $\mathrm{M}_{\mathrm{o}}=\mathrm{Fd}$

As shown, d is the perpendicular distance from point O to the line of action of the force.

In 2- D , the direction of M_{O} is either clockwise or counter-clockwise depending on the tendency for rotation.

MOMENT OF A FORCE - SCALAR FORMULATION

(continued)

For example, $\mathrm{M}_{\mathrm{O}}=\mathrm{F} \mathrm{d}$ and the direction is counter-clockwise.

Often it is easier to determine M_{O} by using the components of \boldsymbol{F} as shown.

Using this approach, $\mathrm{M}_{\mathrm{O}}=\left(\mathrm{F}_{\mathrm{Y}} \mathrm{a}\right)-\left(\mathrm{F}_{\mathrm{X}} \mathrm{b}\right)$. Note the different signs on the terms! The typical sign convention for a moment in 2 -D is that counter-clockwise is considered positive. We can determine the direction of rotation by imagining the body pinned at O and deciding which way the body would rotate because of the force.

EXAMPLE \#1

Given: A 400 N force is applied to the frame and $\theta=20^{\circ}$.

Find: The moment of the force at A.

Plan:

1) Resolve the force along x and y axes.
2) Determine M_{A} using scalar analysis.

EXAMPLE \#1 (continued)

Solution

$$
\begin{aligned}
+\uparrow \mathrm{F}_{\mathrm{y}} & =-400 \cos 20^{\circ} \mathrm{N} \\
+\rightarrow \mathrm{F}_{\mathrm{x}} & =-400 \sin 20^{\circ} \mathrm{N} \\
+\mathrm{M}_{\mathrm{A}} & =\left\{\left(400 \cos 20^{\circ}\right)(2)+\left(400 \sin 20^{\circ}\right)(3)\right\} \mathrm{N} \cdot \mathrm{~m} \\
& =1160 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

MOMENT OF A FORCE - VECTOR FORMULATION

(Section 4.3)

Moments in 3-D can be calculated using scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product, $M_{O}=r \times F$.
Here \boldsymbol{r} is the position vector from point O to any point on the line of action of \boldsymbol{F}. Need to review cross-product.

CROSS PRODUCT

(Section 4.2)

In general, the cross product of two vectors \boldsymbol{A} and \boldsymbol{B} results in another vector \boldsymbol{C}, i.e., $\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}$. The magnitude and direction of the resulting vector can be written as

$$
\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}=\mathrm{AB} \sin \theta \boldsymbol{u}_{\boldsymbol{C}}
$$

Here $\boldsymbol{u}_{\boldsymbol{C}}$ is the unit vector perpendicular to both A and B vectors as shown (or to the plane containing the A and B vectors). Note: $\vec{C} \perp \vec{A} \& \vec{C} \perp B$

CROSS PRODUCT

(continued)
The right hand rule is a useful tool for determining the direction of the vector resulting from a cross product.

For example: $\boldsymbol{i} \times \boldsymbol{j}=\boldsymbol{k}$
Note that a vector crossed into itself is zero, e.g., $i \times i=0$

CROSS PRODUCT

(continued)

You can evaluate the cross product of two vectors if you have them in Cartesian form.

$$
\begin{aligned}
\vec{C}= & \vec{A} \times \vec{B} \\
= & \left(A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}\right) \times\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right) \\
= & A_{x} B_{x} \hat{\imath} \times \hat{\imath}+A_{x} B_{y} \hat{\imath} \times \hat{\jmath}+A_{x} B_{z} \hat{\imath} \times \hat{k}+ \\
& A_{y} B_{x} j \times \hat{\imath}+A_{y} B_{y} \hat{\jmath} \times \hat{\jmath}+A_{y} B_{z} \hat{\jmath} \times \hat{k}+ \\
& A_{z} B_{x} \hat{k} \times \hat{\imath}+A_{z} B_{y} \hat{k} \times \hat{\jmath}+A_{z} B_{z} \hat{k} \times \hat{k}
\end{aligned}
$$

But there is a simpler way to evaluate this.

CROSS PRODUCT

(continued)
Of even more utility, the cross product can be written as

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

MOMENT OF A FORCE - VECTOR FORMULATION

(Section 4.3)

Moments in 3-D can be calculated using scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product, $M_{O}=r \times F$.
Here \boldsymbol{r} is the position vector from point O to any point on the line of action of \boldsymbol{F}.

MOMENT OF A FORCE - VECTOR FORMULATION

 (continued)So, using the cross product, a moment can be expressed as:

$$
\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

By expanding the above equation using 2×2 determinants (see Section 4.2), we get (sample units are $\mathrm{N}-\mathrm{m}$ or $\mathrm{lb}-\mathrm{ft}$)
$M_{O}=\left(\mathrm{r}_{\mathrm{y}} \mathrm{F}_{\mathrm{z}}-\mathrm{r}_{\mathrm{z}} \mathrm{F}_{\mathrm{y}}\right) \boldsymbol{i}-\left(\mathrm{r}_{\mathrm{x}} \mathrm{F}_{\mathrm{z}}-\mathrm{r}_{\mathrm{z}} \mathrm{F}_{\mathrm{x}}\right) \boldsymbol{j}+\left(\mathrm{r}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}-\mathrm{r}_{\mathrm{y}} \mathrm{F}_{\mathrm{x}}\right) \boldsymbol{k}$
The physical meaning of the above equation becomes evident by considering the force components separately and using a 2-D formulation.

EXAMPLE \# 2

Given: $\mathrm{a}=3 \mathrm{in}, \mathrm{b}=6$ in and $\mathrm{c}=2 \mathrm{in}$.
Find: Moment of \boldsymbol{F} about point O .

Plan:

1) Find $r_{O A}$.
2) Determine $M_{O}=r_{O A} \times F$.

Solution $r_{O A}=\{3 i+6 j-0 k\}$ in

$$
\begin{aligned}
\mathbf{M}_{\mathrm{O}}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
3 & 6 & 0 \\
3 & 2 & -1
\end{array}\right| & =[\{6(-1)-0(2)\} \boldsymbol{i}-\{3(-1)-0(3)\} \boldsymbol{j}+ \\
& \{3(2)-6(3)\} \boldsymbol{k}] \mathrm{lb} \cdot \mathrm{in} \\
& =\{-6 \boldsymbol{i}+3 \boldsymbol{j}-12 \boldsymbol{k}\} \mathrm{lb} \cdot \mathrm{in}
\end{aligned}
$$

CONCEPT QUIZ

1. If a force of magnitude F can be applied in four different 2-D configurations ($\mathrm{P}, \mathrm{Q}, \mathrm{R}, \& \mathrm{~S}$), select the cases resulting in the maximum and minimum torque values on the nut. (Max, Min).
A) (Q, P)
C) (P, R)
B) (R, S)
D) (Q, S)

2. If $M=r \times F$, then what will be the value of $M \bullet r$?
A) 0
B) 1
C) $r^{2} F$
D) None of the above.

GROUP PROBLEM SOLVING

Given: A 40 N force is applied to the wrench.

Find: The moment of the force at O .

Plan: 1) Resolve the force along x and y axes.
2) Determine M_{O} using scalar analysis.

Solution: $+\uparrow \mathrm{F}_{\mathrm{y}}=-40 \cos 20^{\circ} \mathrm{N}$

$$
+\rightarrow \mathrm{F}_{\mathrm{x}}=-40 \sin 20^{\circ} \mathrm{N}
$$

$$
\begin{aligned}
T+\mathrm{M}_{\mathrm{O}} & =\left\{-\left(40 \cos 20^{\circ}\right)(200)+\left(40 \sin 20^{\circ}\right)(30)\right\} \mathrm{N} \cdot \mathrm{~mm} \\
& =-7107 \mathrm{~N} \cdot \mathrm{~mm}=-7.11 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

GROUP PROBLEM SOLVING

Given: $\mathrm{a}=3$ in, $\mathrm{b}=6$ in and $\mathrm{c}=2$ in
Find: Moment of F about point P
Plan: 1) Find $r_{P A}$.
2) Determine $\boldsymbol{M}_{P}=\boldsymbol{r}_{\boldsymbol{P A}} \mathbf{x} \boldsymbol{F}$

Solution: $r_{P A}=\{3 i+6 j-2 k\}$ in

$$
\boldsymbol{M}_{P}=\left|\begin{array}{rrr}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
3 & 6 & -2 \\
3 & 2 & -1
\end{array}\right|=\{-2 \boldsymbol{i}-3 \boldsymbol{j}-12 \boldsymbol{k}\} \mathrm{lb} \cdot \text { in }
$$

ATTENTION QUIZ

1. Using the CCW direction as positive, the net moment of the two forces about point P is
A) $10 \mathrm{~N} \cdot \mathrm{~m}$
B) $20 \mathrm{~N} \cdot \mathrm{~m}$
C) $-20 \mathrm{~N} \cdot \mathrm{~m}$
D) $40 \mathrm{~N} \cdot \mathrm{~m}$
E) $-40 \mathrm{~N} \cdot \mathrm{~m}$
2. If $r=\{5 j\} \mathrm{m}$ and $F=\{10 k\} \mathrm{N}$, the moment $r x \boldsymbol{F}$ equals $\left\{\quad Z_{\text {_ }}\right\} \mathrm{N} \cdot \mathrm{m}$.
A) $50 i$
B) $50 j$
C) $-50 i$
D) $-50 j$
E) 0
