MOMENT ABOUT AN AXIS

Today's Objectives:

Students will be able to determine the moment of a force about an axis using
a) scalar analysis, and
b) vector analysis.

QUESTION

The triple scalar product $\boldsymbol{u} \cdot(\boldsymbol{r} \times \boldsymbol{F})$ results in
A) a scalar quantity (+ or -). B) a vector quantity.
C) zero. D) a unit vector.
E) an imaginary number.

APPLICATIONS

With the force \boldsymbol{F}, a person is creating the moment $\boldsymbol{M}_{\boldsymbol{A}}$. What portion of $\boldsymbol{M}_{\boldsymbol{A}}$ is used in turning the socket?

The force \boldsymbol{F} is creating the moment $\boldsymbol{M}_{\boldsymbol{O}}$. How much of $\boldsymbol{M}_{\boldsymbol{O}}$ acts to unscrew the pipe?

SCALAR ANALYSIS

Recall that the moment of a force about any point A is $M_{A}=F d_{A}$ where d_{A} is the perpendicular (or shortest) distance from the point to the force's line of action. This concept can be extended to find the moment of a force about an axis.

In the figure above, the moment about the y -axis would be $\mathrm{M}_{\mathrm{y}}=20(0.3)=6 \mathrm{~N} \cdot \mathrm{~m}$. However, this calculation is not always trivial and vector analysis may be preferable.

VECTOR ANALYSIS

Our goal is to find the moment of \boldsymbol{F} (the tendency to rotate the body) about the axis $a^{\prime}-\mathrm{a}$.

First compute the moment of \boldsymbol{F} about any arbitrary point O that lies on the a'a axis using the cross product.

$$
M_{O}=r \times F
$$

Now, find the component of $\boldsymbol{M}_{\boldsymbol{O}}$ along the axis a'-a using the dot product. This is the projection of $\boldsymbol{M}_{\boldsymbol{O}}$ along a'-a.

$$
\mathrm{M}_{\mathrm{a}}=\boldsymbol{u}_{\boldsymbol{a}} \cdot \boldsymbol{M}_{\boldsymbol{O}}
$$

VECTOR ANALYSIS (continued)

M_{a} can also be obtained as

$$
M_{a}=\mathbf{u}_{a} \cdot(\mathbf{r} \times \mathbf{F})=\left|\begin{array}{ccc}
u_{a_{x}} & u_{a_{y}} & u_{a_{z}} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

The above equation is also called the triple scalar product.

In the this equation,
$\boldsymbol{u}_{\boldsymbol{a}}$ represents the unit vector along the axis a'-a axis,
\boldsymbol{r} is the position vector from any point on the a^{\prime}-a axis to any point A on the line of action of the force, and
\boldsymbol{F} is the force vector.

Note

\boldsymbol{r} is the position vector from any point on the a^{\prime}-a axis to any point A on the line of action of the force.

We get to pick the origin of \boldsymbol{r} on the $a^{\prime}-a$ axis. We get to pick the termination of \boldsymbol{r} on the line of action. Our job is to find easiest to see and use origin/terminal points for \boldsymbol{r}.

In previous section we saw why we could choose any point on line of action to determine a moment about a point.

But why can we choose any point on the axis of interest?

Especially since, in general, $\vec{r}_{O A} \times \vec{F} \neq \vec{r}_{P A} \times \vec{F}$

Although their moments are not the same, their projections along OP are the same!

First note $\vec{r}_{O A}=\vec{r}_{O P}+\vec{r}_{P A}$. So

$$
\begin{aligned}
M_{O P} & =\hat{u}_{O P} \cdot\left(\vec{r}_{O A} \times \vec{F}\right)=\hat{u}_{O P} \cdot\left(\left(\vec{r}_{O P}+\vec{r}_{P A}\right) \times \vec{F}\right) \\
& =\hat{u}_{O P} \cdot\left(\vec{r}_{O P} \times \vec{F}\right)+\hat{u}_{O P} \cdot\left(\vec{r}_{P A} \times \vec{F}\right)
\end{aligned}
$$

Now $\vec{r}_{O P} \times \vec{F}$ is \perp to $\vec{r}_{O P}$. So first term vanishes.

EXAMPLE

Given: A force is applied to
the tool to open a gas valve.
Find: The magnitude of the moment of this force about the z axis of the value.

Plan:

1) We need to use $\boldsymbol{M}_{z}=\boldsymbol{u} \cdot(\boldsymbol{r} \times \boldsymbol{F})$.
2) Note that $\boldsymbol{u}=1 \boldsymbol{k}$.
3) Choose point on z axis and on line of action. These can only be A and B here. The vector r is the position vector from A to B.
4) Force \boldsymbol{F} is already given in Cartesian vector form.

EXAMPLE (continued)

$$
\left.\begin{array}{rl}
\boldsymbol{u} & =1 \boldsymbol{k} \\
\boldsymbol{r}_{\boldsymbol{A} \boldsymbol{B}} & =\left\{0.25 \sin 30^{\circ} \boldsymbol{i}+0.25 \cos 30^{\circ} \boldsymbol{j}\right\} \mathrm{m} \\
& =\{0.125 \boldsymbol{i}+0.2165 \boldsymbol{j}\} \mathrm{m}
\end{array}\right\} \begin{aligned}
& \boldsymbol{F}=\{-60 \boldsymbol{i}+20 \boldsymbol{j}+15 \boldsymbol{k}\} \mathrm{N} \\
& \mathrm{M}_{\mathrm{z}}=\boldsymbol{u} \bullet\left(\boldsymbol{r}_{\boldsymbol{A} \boldsymbol{B}} \times \boldsymbol{F}\right)
\end{aligned} \quad \begin{aligned}
\mathrm{M}_{\mathrm{z}} & =\left|\begin{array}{lll}
0 & 0 & 1 \\
0.125 & 0.2165 & 0 \\
-60 & 20 & 15
\end{array}\right| \\
& =1\{0.125(20) \\
& =15.5 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

CONCEPT QUIZ

1. The vector operation $(\boldsymbol{P} \times \boldsymbol{Q}) \cdot \boldsymbol{R}$ equals
A) $\boldsymbol{P} \times(\boldsymbol{Q} \cdot \boldsymbol{R})$.
B) $\boldsymbol{R} \cdot(\boldsymbol{P} \times \boldsymbol{Q})$.
C) $(\boldsymbol{P} \cdot \boldsymbol{R}) \times(\boldsymbol{Q} \cdot \boldsymbol{R})$.
D) $(\boldsymbol{P} \times \boldsymbol{R}) \bullet(\boldsymbol{Q} \times \boldsymbol{R})$.

CONCEPT QUIZ

2. The force \boldsymbol{F} is acting along DC. Using the triple product to determine the moment of \boldsymbol{F} about the bar BA, you could use any of the following position vectors except \qquad .
A) $r_{B C}$
B) $\boldsymbol{r}_{A D}$
C) $\boldsymbol{r}_{A C}$
D) $r_{D B}$
E) $\boldsymbol{r}_{B D}$

Example

Given: A force of 80 lb acts along the edge DB .

Find: The magnitude of the moment of this force about the axis AC.

Plan:

1) We need to use $\mathrm{M}_{\mathrm{AC}}=\boldsymbol{u}_{\boldsymbol{A C}} \cdot\left(\boldsymbol{r}_{? ?} \times \boldsymbol{F}_{\boldsymbol{D B}}\right)$
2) Can choose A or C and D or $B . \boldsymbol{r}_{A B}$ easy to find.
3) Find $\boldsymbol{u}_{\boldsymbol{A C}}=\boldsymbol{r}_{\boldsymbol{A C}} / \mathrm{r}_{\mathrm{AC}}$
4) Find $\boldsymbol{F}_{\boldsymbol{D} \boldsymbol{B}}=80 \mathrm{lb} \boldsymbol{u}_{\boldsymbol{D} \boldsymbol{B}}=80 \mathrm{lb}\left(\boldsymbol{r}_{\boldsymbol{D} \boldsymbol{B}} / \mathrm{r}_{\mathrm{DB}}\right)$
5) Complete the triple scalar product..

SOLUTION

$$
\begin{aligned}
& \boldsymbol{r}_{A B}=\{20 \boldsymbol{j}\} \mathrm{ft} \\
& \boldsymbol{r}_{A C}=\{13 \boldsymbol{i}+16 \boldsymbol{j}\} \mathrm{ft} \\
& \boldsymbol{r}_{D B}=\{-5 \boldsymbol{i}+10 \boldsymbol{j}-15 \boldsymbol{k}\} \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
u_{A C} & =(13 \boldsymbol{i}+16 \boldsymbol{j}) \mathrm{ft} /\left(13^{2}+16^{2}\right)^{1 / 2} \mathrm{ft} \\
& =0.6306 \boldsymbol{i}+0.7761 \boldsymbol{j} \\
\boldsymbol{F}_{\boldsymbol{D B}} & =80\left\{\boldsymbol{r}_{\boldsymbol{D B}} /\left(5^{2}+10^{2}+15^{2}\right)^{1 / 2}\right\} \mathrm{lb} \\
& =\{-21.38 \boldsymbol{i}+42.76 \boldsymbol{j}-64.14 \boldsymbol{k}\} \mathrm{lb}
\end{aligned}
$$

Solution (continued)

Now find the triple product, $\mathrm{M}_{\mathrm{AC}}=\boldsymbol{u}_{\boldsymbol{A C}} \cdot\left(\boldsymbol{r}_{\boldsymbol{A B}} \times \boldsymbol{F}_{\boldsymbol{D B}}\right)$

$$
M_{\mathrm{AC}}=\left|\begin{array}{llc}
0.6306 & 0.7706 & 0 \\
0 & 20 & 0 \\
-21.38 & 42.76 & -64.14
\end{array}\right| \mathrm{ft}
$$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{AC}} & =0.6306\{20(-64.14)-0-0.7706(0-0)\} \mathrm{lb} \cdot \mathrm{ft} \\
& =-809 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

The negative sign indicates that the sense of $\boldsymbol{M}_{\boldsymbol{A C}}$ is opposite to that of $\boldsymbol{u}_{\boldsymbol{A C}}$

ATTENTION QUIZ

1. For finding the moment of the force \boldsymbol{F} about the x-axis, the position vector in the triple scalar product should be \qquad .
A) $\boldsymbol{r}_{\boldsymbol{A C}}$
B) $r_{B A}$
C) $\boldsymbol{r}_{A B}$
D) $r_{B C}$

2. If $\boldsymbol{r}=\{1 \boldsymbol{i}+2 \boldsymbol{j}\} \mathrm{m}$ and $\boldsymbol{F}=\{10 \boldsymbol{i}+20 \boldsymbol{j}+30 \boldsymbol{k}\} \mathrm{N}$, then the moment of \boldsymbol{F} about the y-axis is \qquad $\mathrm{N} \cdot \mathrm{m}$.
A) 10
B) -30
C) -40
D) None of the above.
