Relative Velocity in 1D

$V_{O / G}$ means the speed of the object to the ground
From the perspective of A, how fast and in what direction is B moving?

$$
\vec{v}_{B / A}=+1 \mathrm{~m} / \mathrm{s}
$$

From the perspective of B , how fast and in what direction is A moving?

$$
\vec{v}_{A / B}=-1 \mathrm{~m} / \mathrm{s} \quad \text { Note } \vec{v}_{B / A}=-\vec{v}_{A / B}
$$

Relative Velocity in 2D

$V_{O / G}$ means the speed of the object to the ground
From the perspective of A, how fast and in what direction is B moving?

$$
\vec{v}_{B / A}=\{-2 \hat{\boldsymbol{\imath}}+3 \hat{\boldsymbol{\jmath}}\} \mathrm{m} / \mathrm{s}
$$

From the perspective of B, how fast and in what direction is A moving?

$$
\vec{v}_{A / B}=\{+2 \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}\} \mathrm{m} / \mathrm{s}
$$

$$
\text { Note } \vec{v}_{B / A}=-\vec{v}_{A / B}
$$

$$
\vec{v}_{A / B}=\vec{v}_{A / G}-\vec{v}_{B / G}
$$

- Velocity of A relative to B.
- How fast B says A moves.
- Relationship hold for position and acceleration as well.

$$
\begin{aligned}
& \vec{r}_{A / B}=\vec{r}_{A / G}-\vec{r}_{B / G} \\
& \vec{a}_{A / B}=\vec{a}_{A / G}-\vec{a}_{B / G}
\end{aligned}
$$

