

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Equations of SHM

$$x(t) = A\cos(\omega t + \phi)$$
 $\omega = 2\pi/T$
 $A - amplitude$, $\omega - angular frequency$,
 $T - period$, $\phi - phase constant$
Equilibrium is $x = 0$

$$v(t) = -\omega A \sin(\omega t + \phi)$$
 $v_{max} = \omega A$

$$a(t) = -\omega^2 A\cos(\omega t + \phi)$$
 $a_{max} = \omega^2 A$

ω From Physical Principles

By NII,
$$-kx(t) = ma(t)$$

 $-kAcos(\omega t + \phi) = -m \omega^2 Acos(\omega t + \phi)$
 $k = m\omega^2 \text{ or } \omega^2 = k/m$

Note – No dependence on A

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

If you know x and A, can find ϕ by simple trig.

Time and the Reference Circle

Position repeats every T.

 ω Move angle θ in time t.

$$\theta = \omega t = \frac{2\pi}{T}t$$

$$\frac{\theta}{2\pi} = \frac{t}{T}$$

Q. If T = 4 s and ϕ = 30°, when does B occur?

A.
$$\frac{30}{360} = \frac{t}{4} \to t = \frac{4}{12} \ sec$$

Questions

Questions

$$d_{\perp} (= h \sin \theta)$$

Copyright © 2008 Pearson Education, Inc.

$$\omega = \sqrt{\frac{mgh}{I}}$$
, I is rotaional inertia

$$\omega = \sqrt{\frac{K}{I}}$$
, K wire stiffness

to damp more quickly.

Questions

Amplitude

(a)

YouTube Video