

Copyright & 2008 Pearson Education, Inc.

RHR and unit vectors

 $\tau = rF_{\perp} = rFsin\theta$

Note: F_{\perp} means the component of F perpendicular to R – not the vertical component of F.

Use this method if both R and θ are easy to find.

$\tau = \mathsf{R}_{\perp}\mathsf{F}$

Use this method if the lever arm is easy to find. Often used for vertical or horizontal forces.

$$\vec{\tau} = \vec{R} \times \vec{F}$$

= $(\hat{i}x + \hat{j}y) \times (\hat{i}F_x + \hat{j}F_y)$
= $\hat{k}(xF_y - yF_x)$

$$\tau_z = +xF_y - yF_x$$